中文 ENGLISH
客服热线:4006860100/13521452266
首页 >> 资讯中心 >> 精品推荐

Quasi Vivo流动培养系统建立细胞共培养体系

——血脑屏障三种细胞共培养


血脑屏障(blood-brain barrier, BBB)在中枢神经系统(CNS)的生理和病理中都起着重要的作用。血脑屏障功能异常会引起包括阿尔茨海默症(AD)等许多神经退行性疾病。组成血脑屏障的毛细血管内皮细胞(capillary endothelial cells)、周细胞(pericytes)以及星形胶质细胞(astrocytes)间的复杂的相互作用使得很难在体内确定这三种细胞对神经毒性各自的贡献。而Quasi Vivo流动培养系统可为体外培养这三种细胞提供在不形成屏障的情况下维持细胞间通讯的最佳培养环境。Quasi Vivo流动培养系统为未来研究不同类型的血脑屏障细胞在中枢神经系统疾病和细胞毒性试验中的特殊作用提供一个有价值的工具。(Miranda-Azpiazu P, et al. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Sci Rep. 2018; 8(1): 1-10.)

Quasi Vivo流动培养系统解决血脑屏障3种贴壁细胞共培养难题 中国独家代理北京泽平

图 1. 单独培养的人星形胶质细胞(A,GFAP阳性)、周细胞(B,α-actin阳性)、血管内皮细胞(C,CD31阳性)以及血管内皮细胞形成的紧密连接(D,ZO1阳性)。

 

Quasi Vivo流动培养系统解决血脑屏障3种贴壁细胞共培养难题 中国独家代理北京泽平

图 2 用Quasi-Vivo QV500培养共享相同的培养基的星形胶质细胞、周细胞和血管内皮细胞的示意图(A),R为储液瓶,P为蠕动泵。连接培养基存储瓶的一个Quasi-Vivo QV500流动培养系统的细胞培养腔室(B)。

 

Quasi Vivo流动培养系统解决血脑屏障3种贴壁细胞共培养难题 中国独家代理北京泽平

图 3 Quasi-Vivo QV500流动培养系统建立的能同时培养三种不同细胞的多细胞共培养体系

 

Quasi Vivo流动培养系统解决血脑屏障3种贴壁细胞共培养难题 中国独家代理北京泽平

图4 几种流动培养方式示意图:A图为单独星形角质细胞流动培养,B图为单独周细胞流动培养,C图为单独血管内皮细胞流动培养,D图为三种细胞组合后一起流动培养。

 

Quasi Vivo流动培养系统解决血脑屏障3种贴壁细胞共培养难题 中国独家代理北京泽平

图5 用MTT法测细胞活力,与静态培养相比,采用Quasi-Vivo QV500流动培养系统对单独培养血管内皮细胞(HBECs)、周细胞(HBVPs)、星形角质细胞(HAs)(A)或三种细胞共培养(B)的血管内皮细胞的细胞活力有明显升高。

 

Quasi Vivo流动培养系统解决血脑屏障3种贴壁细胞共培养难题 中国独家代理北京泽平

图6 用MTT法测细胞活力,与静态培养(Static)相比,流动培养(Dynamic)的周细胞(HBVPs)会更早受到Aβ25-35(淀粉样蛋白β肽的Aβ25-35片段,用于阿尔茨海默病的造模)的毒害。

 

总结:

本文中研究者利用Quasi-Vivo QV500流动培养系统建立了三种细胞的共培养。这些细胞不接触,通过共享培养基实现细胞间的通信,不形成屏障能更好的研究这些细胞类型单独对不同化合物的响应情况。并且研究者还发现共享相同培养基的星形胶质细胞、周细胞和血管内皮细胞的最适流速为50 l/min。

 

作为创新型细胞培养方法,Quasi Vivo流动培养已经全球70余家专业机构使用验证,获得了令人侧目的培养效果,在美、英、法、日等多国开展了颇具新意的细胞研究。

Quasi Vivo流动培养广泛应用于血脑屏障、脑组织类器官、心血管、呼吸系统(热点)、肝脏、肾脏、肠道等各类器官模型培养中。

Quasi Vivo流动培养系统解决血脑屏障3种贴壁细胞共培养难题 中国独家代理北京泽平

 

Quasi Vivo流动培养系统,贴壁细胞培养实验指导

 

 

Quasi Vivo参考文献

1.Tommaso S. et al., 2011. Engineering Quasi-Vivo in vitro organ models. Advances in Experimental Medicine and Biology Volume: 745, pp 138-153.
2.Patricia M. et al., 2018. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Scientific Reports Volume: 8, Issue: 1, pp 8784.
3.Basma E. et al. 2020. A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation. Scientific Reports Volume: 10, Issue: 1, pp 3788.
4.Miranda A. et al., 2016. A three dimensional (3D) human in vitro blood-brain barrier (BBB). Heart Volume: 102.
5.Buesch S. et al., 2018. A Novel In Vitro Liver Cell Culture Flow System Allowing Long-Term Metabolism and Hepatotoxicity Studies. Applied In Vitro Toxicology Volume: 4, Issue: 3, pp 232-237.
6.Alec O. et al., 2019. Development of an in vitro media perfusion model of Leishmania major macrophage infection. 2019 PLOS ONE Volume: 14, Issue: 7.
7.Sean M. et al., 2017. In-silico Characterisation of the Kirkstall QV900 In-Vitro System for Advanced Cell Culture. 5th International Conference on Computational and Mathematical Biomedical Engineering pp 1174-1177.
8.Ahluwalia A. et al., 2011. Hepatotoxicity of diclofenac in a Quasi-Vivo™ multicompartment bioreactor. oxicology Letters Volume: 205. 
9.Tomlinson, L. et al., 2019. In vitro liver zonation of primary rat hepatocytes.Front. Bioeng. Biotechnol., 7(17). 
10.Elbakary, B. and Badhan R. K. S, 2020. A dynamic perfusion based blood brain barrier model for cytotoxicity testing and drug permeation. Scientific Reports, 10(1),3788. 
11.O’Keefe, A. et al., 2019. Development of an in vitro media perfusion model of Leishmania major macrophage infection. Plos One, 14(7).  
12.Miranda-Azpiazu, P. et al., 2018. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases. Scientific Reports, 8, 8784. 
13.Chandorkar, P. et al., 2017. Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections. Scientific Reports, 7, 11644. 
14.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4).  
15.Mattei, G., Giusti, S. & Ahluwalia, A., 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes, 2(3).   
16.Mazzei, D. et al., 2010. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnology and Bioengineering, 106.  
17.Nithiananthan, S. et al., 2016. Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1. Journal of Cellular Biochemistry, 13.   
18.Ramachandran, S.D. et al., 2015. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE, 10(10).  
19.Rashidi, H. et al., 2016. Fluid shear stress modulation of hepatocyte like cell function. Archives of Toxicology, 90, 7.  
20.Vinci, B. et al., 2012. An in vitro model of glucose and lipid metabolism in a multicompartmental bioreactor. Biotechnology Journal, 7. 
21.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4), pp.1–9. 
22.Mattei, G., Giusti, S. & Ahluwalia, A., 2014. Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes, 2, pp.548–569.  
23.Mazzei, D. et al., 2010. A low shear stress modular bioreactor for connected cell culture under high flow rates. Biotechnology and Bioengineering, 106, pp.127–137. 
24.Nithiananthan, S. et al., 2016. Physiological Fluid Flow Moderates Fibroblast Responses to TGF-β1. Journal of cellular biochemistry, 13(October), pp.1–13. Available at: 
25.Ramachandran, S.D. et al., 2015. In vitro generation of functional liver organoid-like structures using adult human cells. PLoS ONE, 10(10), pp.1–14. 
26.Rashidi, H. et al., 2016. Fluid shear stress modulation of hepatocytelike cell function. Archives of Toxicology, pp.3–7. 
27.Iori, E. et al., 2012. Glucose and fatty acid metabolism in a 3 tissue in-vitro model challenged with normo- and hyperglycaemia. PLoS ONE, 7(4).  
28.Vinci, B. et al., 2011. Modular bioreactor for primary human hepatocyte culture: Medium flow stimulates expression and activity of detoxification genes. Biotechnology Journal, 6, pp.554–564. 
29.Tommaso S. et al., 2011. Engineering Quasi-Vivo in vitro organ models. Advances in Experimental Medicine and Biology Volume: 745, pp 138-153.
30.Ahluwalia A. et al., 2011. Hepatotoxicity of diclofenac in a Quasi-Vivo™ multicompartment bioreactor. oxicology Letters Volume: 205. 

 

Quasi Vivo流动培养系统相关文章

-流动培养在3D培养中初步获得心肌细胞结构和功能
-流动培养原代肝细胞基因上调
-流动培养提高人支气管上皮细胞分化

-流动培养用于糖尿病模型cross-talk研究

 

LONZA人原代细胞相关产品

-人肺微血管内皮细胞和培养基

-人星形胶质细胞和培养基

 

立即拨打13521452266,获取Quasi Vivo流动培养系统免费技术咨询+报价

——Quasi Vivo中国独家代理商,北京泽平

版权所有:北京泽平科技有限责任公司   地址:北京市海淀区花园东路10号高德大厦8层816室   电话:135-21452266